
McAiden Research Lab, Juttikhun Jirathanan, 2023
BLOG.ITSELECTLAB

Mobile Malware Reverse Engineering - 0x1: The Beginning

Research Lab

2022:
• 2nd place Thailand Cyber Top Talent –
Team PoE (Prize: 50,000 THB)

2023:
• 2nd place National Coding Day: White Hat
Challenge – Team PoE555 (Prize: 3,000
USD)

CVEs:
• CVE-2022-46265 – Siemens host header
injection

In-house developed tools:
• ATM dispenser security testing kit (XFS)
• Bypassing client-side security of mobile
applications

• Breaking end-to-end encryption

Decoding the Speaker:

• Name: Juttikhun Jirathanan (Gohung)

• Team Lead of McAiden Consulting Co., Ltd.

• Penetration Tester

• 9 years in cybersecurity, 2-blue, 7-red

• Certificates: OSCP, OSWE, CRTP, CRTE, GPEN, eMAPT, ECIH

Access Brokers 2022

Access Broker Boom Accelerated in 2022

Access brokers are threat actors
who acquire access to
organizations and provide or sell
this access to other actors,
including ransomware operators.
The popularity of their services
increased in 2022, with more than
2,500 advertisements for access
identified — a 112% increase
compared to 2021.

Published by CrowndStrike 2023

Global RASP Market

Runtime Application Self-Protection

It is a security technology that is
specifically designed to monitor a
running application and identify or
block security threats in real-time.

Data from:

https://www.maximizemarketresearch.com/market-report/global-runtime-
application-self-protection-market/882/

Android Architecture

• Linux Kernel is the foundation of the Android
platform.

• Hardware Abstraction Layer (HAL) provides
standard interfaces that expose device hardware
capabilities to the higher level.

• Android Runtime is written to run multiple virtual
machines on low-memory devices by executing DEX
files.

• Native C/C++ Libraries are the native code which
the Android Runtime is built from. The Android
platform provides Java framework APIs that expose
the functionality of some of these native libraries to
apps.

• Java API Framework is a framework written in Java
to provide all functionalities of Android OS to apps.

• System Apps is the set of core apps come with
Android.

Android Virtual Machine
• Virtual machines are abstraction layers between

an application and the underlying Android device.

• Android apps are written in Java, but are
compiled into platform independent Dalvik
Executable, or DEX, bytecode.

• Android VM's run the DEX bytecode directly
compiled from the original Java.

• This handles the translations of the differences
between different operating system versions.

• Prior to KitKat (v.4.4), Android used the Dalvik
VM.

• With the introduction of KitKat, Android began
using a new virtual machine: Android Runtime
(ART) and stop using the Dalvik VM entirely with
Lollipop (v5.0)

• Both runtimes work on DEX bytecode, but ART
has some new optimization features.

Android App (Java)

DEX bytecode

Dalvik/ART VM

Android Operating System

Android Virtual Machine
• In general, the Dalvik VM still executes a .dex file,

which in turn handles the interaction with the
native code.

Android App (Java)

Virtual Machine Native Code
(C, C++)

HAL / Hardware

Android Security Model
• In the generalized Android Security Model, there are two distinct layers to the model.

• The first is implemented in the operating system and keeps installed applications
fundamentally isolated from on another.

• The second is the security layer in the application itself.

• In the Android operating system, each app is assigned a specific User ID (UID) which is
inherited from the underlying Linux operating system. This assignment is done
dynamically on installation. It establishes the identity of the application.

• Basically, the application can interact with any file owned by its UID, but no others,
unless they are shared with it by another application or the operating system.

Android Security Model
• This UID separation forms the foundation of the Android Application Sandbox and

prevents anything other than the app itself, certain components of the operating
system, or the "root" user from accessing its data.

$ ls –al
$ ls -an

• In the image below, you can see how each application's files are owned by a distinct
user and group.

Android Security Model
• The left of the uid/gid is a column which shows the file or directory's permissions.

• The first character identifies the file type ("-" for regular file, "d" for directory).

• The following characters are three groups of three representing the user, group, or
other permissions.

• The permissions are: "r" (read), "w" (write), "x" (execute), and "-" (no permission of that
type)

Android Sandboxing
• The conceptual Android Application Sandbox, create a separation of files and code

execution between applications on the same device.

• The Android Application Sandbox is implemented in the operating system rather than
the VM.

• Prior to Android 4.3, UID separation was the only thing isolating apps from one another
and more importantly, the operating system from privileged users (e.g. root).

• In earlier Android versions, if the root user account were ever compromised, the entire
operating system could be attacked without bounds.

• Android 4.3 began to implement SELinux, when it reached Android 5.0 (L), it was fully
enforcing its more secure implementation.

• Essentially, SELinux denies all process interactions and then creates policies to allow
only the expected, or "known good" interactions between them.

Android Security Features

Linux Kernel
• Android is built on top of the Linux kernel, inheriting its robust security model, including process

isolation, user-based permission models, and file-based permissions.

Application Sandbox
• Each application runs in its own sandbox, a dedicated environment that isolates the application's

data and code execution from other apps. This limits the ability of a malicious application to access
data or code from other applications.

Application Signing and Verification
• Android applications must be digitally signed to ensure their integrity. This ensures that updates

and modifications are only made by the verified owner of the application.

Application Permissions
• Android uses a permission-based model, asking users to grant permissions to apps for accessing

sensitive or restricted data, such as location or contact list.

Android Security Features

Android
Security
Features

Verified
Boot

Secure Boot

Security
Updates

File-based
Encryption

Google Play
Protect

Permissions
System

Application
Sandbox

APK Structure
• When Android applications are compiled, the resulting output is an Android Package

(APK) file. It is a compressed archive containing the resources necessary to run the
app.

• This includes both the code and resources, such as images.

• In order to inspect the contents of an APK, you first need to decompress it with any
tool that is capable to open an ordinary ZIP file.

APK Structure
• Once decompressing an APK file, we will find

the the following files and directories

• AndroidManifest.xml

• classes.dex

• resources.arsc

• /assets

• /lib

• /META-INF

• /res

• Third-party libraries, etc.

$ unzip app.apk -d app_unzip
$ unzip app.apk -d app_unzip

AndroidManifest.xml
• The AndroidManifest.xml file located in the decompressed file is a binary file,

which is not human-readable. In order to view it properly, you need to convert it to
a human-readable XML format. But we will cover the process of converting the
file soon.

AndroidManifest.xml
• The AndroidManifest.xml file in an Android application serves as a central

configuration file that provides essential information about the app to the
Android system.
• Package name & Version
• Components

• Activities
• Services
• Broadcast Receivers
• Content Providers

• Intent Filters
• Actions
• Categories
• Data

• Permissions
• Required Permissions
• Custom Permissions

• Others

AndroidManifest.xml
• Package Name & Versions

AndroidManifest.xml

• Components
• Activities: All the activities used in the application are declared here.

• Services: Background tasks

• Broadcast Receivers: These are components that can receive and
respond to broadcast messages from other applications or the system

• Content Providers: These expose a specific set of data to other
applications

To understand an app, we need to know list of all those things and keep noted.
Mostly we need to analyze them one by one to find out what and how do they work.

AndroidManifest.xml

Exported Components: the “exported” attribute specifies whether or not a
component (Activity, Service, BroadcastReceiver, ContentProvider) is available for
other applications to interact with.

• Activities: If an <intent-filter> is defined, the activity is exported by default.
Otherwise, it is not.

• Services: The default is false.

• Broadcast Receivers: If an <intent-filter> is defined, the receiver is exported by
default. Otherwise, it is not.

• Content Providers: The default is true.

When a component is exported, we may be able to call or start
it directly…

AndroidManifest.xml

Example of Exported Activity

AndroidManifest.xml

Sample of calling the Activity directly using ADB

§ ADB starts an app

§ start an app using the Action android.intent.action.VIEW

§ Activity name com.wcurrencyworlds.worldcurrency.lem.Dghs

$ adb shell am start -a android.intent.action.VIEW -n
com.wcurrencyworlds.worldcurrency/com.wcurrencyworlds.worldcurrency.lem.Dghs

$ adb shell am start -a android.intent.action.VIEW -n
com.wcurrencyworlds.worldcurrency/com.wcurrencyworlds.worldcurrency.lem.Dghs

$ adb shell am start -n com.package.name/com.package.name.ActivityName

You can also specify actions to be filtered by your intent-filters:
$ adb shell am start -a com.example.ACTION_NAME -n
com.package.name/com.package.name.ActivityName

Supply extra parameter to the activity
$ adb shell am start -n com.mc.someExportActivity/.someExportActivity --es
"PIN" "12345"

Android Debug Bridge (ADB)
§ The Android Debug Bridge, commonly referred to as ADB, is invaluable tool, which

allows you to interact with a running application and/or an Android device itself.

§ ADB can be used with either a physical device or an emulator.

§ ADB consists of three components, a client, a server and a daemon. The client and
server both run on your computer, while the daemon runs on the device or
emulator.

§ The client program you directly interact with.

§ The server manages communications between the client and daemon.

§ The daemon runs in the background on the device or emulator and executes the
commands.

§ On Windows PCs, ADB can be started found at:

C:\Users\<username>\AppData\Local\Android\sdkplatform-tools\adb.exe

§ On Linux or OSX, ADB can be found at:

/Users/<username>/Library/Android/sdk/platform-tools/adb

ADB Cheat Sheet (1)

§ Lists connected devices

$ adb devices

§ Restart adbd with root permissions

$ adb root

§ Starts the adb server

$ adb start-server

§ Kills the adb server

$ adb kill-server

§ Reboots the device

$ adb reboot

ADB Cheat Sheet (2)

§ List of devices by product/model

$ adb devices -l

§ Starts the background terminal

$ adb shell

§ Exits the background terminal

$ exit

§ Redirect command to specific device

$ adb -s <deviceName> <command>
$ adb -s 4d00302557b160df shell

§ Directs command to only attached USB device
$ adb -d <command>
$ adb -d shell

ADB Cheat Sheet (3)
§ Setting proxy

$ adb shell settings put global http_proxy 127.0.0.1:8888

§ Clear proxy

$ adb shell settings put global http_proxy :0

§ Install app

$ adb shell install <apk>

§ Install an app from phone path

$ adb shell install -r <path>

§ Uninstall

$ adb shell uninstall <package_name>

ADB Cheat Sheet (4)

§ Upload file to the device

$ adb push <local> <remote>
$ adb push test.txt /sdcard/Download/

§ Download file from the device

$ adb pull <remote> <local>
$ adb pull app.apk downloaded_app.apk

§ ADB Capture screen to local machine (Mac)

$ alias adbss='adb exec-out screencap -p > /<path_to_store>/adb-ss-`date
+%Y%m%d_%H%M%S`.png'

§ ADB list installed packaged

$ adb shell pm list packages
$ adb shell 'pm list packages -f' | sed -e 's/.*=//' | sort

ADB Cheat Sheet (5)
§ ADB forward port

§ The following command forward computer port 6123 to Android device port
7123. E.g. when the computer tries to access tcp://localhost:6123 the
request will be forwarded to the Android device port 7123.

$ adb forward tcp:6123 tcp:7123

§ ADB reverse port

§ The following command reverse Android port 6123 to computer port 7123.
E.g. when the phone tries to access tcp://localhost:6123 the request will be
forward to computer port 7123.

$ adb reverse tcp:6123 tcp:7123

ADB Cheat Sheet (6)

§ ADB backup an app
$ adb backup -apk -nosystem <package_name>
[...after backup finished...]

$ dd if=backup.ab bs=1 skip=24 | python -c "import
zlib,sys;sys.stdout.write(zlib.decompress(sys.stdin.read()))" > backup.tar

$ tar xvf backup.tar

§ ADB Restore an app
$ adb restore -apk -nosystem backup.ab

ADB Cheat Sheet (7)
§ ADB stops an app
$ adb shell am force-stop com.package.name

§ Starting developer options
$ adb shell am start -a
com.android.settings.APPLICATION_DEVELOPMENT_SETTINGS

§ Launch settings
$ adb shell am start -a android.settings.SETTINGS
$ adb shell am start -a android.settings.SECURITY_SETTINGS
$ adb shell am start -a
com.android.settings.APPLICATION_DEVELOPMENT_SETTINGS
$ adb shell am start -a
android.settings.MANAGE_ALL_APPLICATIONS_SETTINGS
$ adb shell am start -a com.android.credentials.INSTALL

§ ADB checks CPU information

$ adb shell cat /proc/cpuinfo
processor : 0
model name : ARMv7 Processor rev 5 (v7l)
[...]

$ adb shell getprop ro.product.cpu.abi
armeabi-v7a

ADB Cheat Sheet (8)
§ Get path of the APK

$ adb shell 'pm list packages -f' | grep -iE data/app/
$ adb shell pm path com.example.someapp

§ Download the APK file

$ adb pull /data/app/com.example.someapp/base.apk ./com.example.someapp.apk

Dex2jar + JD-GUI

§ The dex2jar tool is an open-source project for working with .dex and .class files.

§ For our purposes, we use it to convert from classes.dex to a .jar file

§ dex2jar can be downloaded from https://github.com/pxb1988/dex2jar/releases

§ Before using dex2jar tool, we need to unzip the app.

§ The following command is used to converting a classes.dex to a .jar file:

$ unzip app.apk -d app_unzip
$./d2j-dex2jar.sh classes.dex -o classes.jar

§ The process of converting from a .dex to a .jar file is important because it allows
the use of conventional Java decompiler tools to obtain something that looks very
similar to the original source code written by the developer

https://github.com/pxb1988/dex2jar/releases

Dex2jar + JD-GUI
§ JD-GUI is a simple tool capable to decompiling Java .jar files and allowing you to

browse through the source code of the .class files contained within.

§ JD-GUI can be downloaded from https://java-decompiler.github.io/

§ We use JD-GUI to open .jar file and it will show the decompiled code

https://java-decompiler.github.io/

JADX
§ jadx tool is an open-source tool for decompiling the APK into Java source code in a

single step.

§ jadx can be download from https://github.com/skylot/jadx

§ To decompile an APK file, use the following command

https://github.com/skylot/jadx

JEB
§ JEB Decompiler is a popular tool in the field of reverse engineering, especially for

Android applications. It's a commercial product that offers a range of features
designed to aid in the disassembly and decompilation of Android APKs, native
libraries, and more.

Catch Up for Now
§ Android OS is based on Linux + additional security on top of it

§ To reverse engineer an Android app, we need to understand its architecture,
security model, and how things work.

§ To reverse engineer an Android app, we need a proper tools to decompile the APK
into the Java codes or at least similar.

Try Reversing an App
§ The purposes of reversing an app are different

§ For debugging

§ For verifying security

§ For forensic

§ For personal improvement and fun

simplelocker.apk
§ SimpleLocker is a type of Android ransomware that was first discovered around

2014.

§ Ransomware is malicious software that encrypts files on a device and demands
payment to restore them.

§ In the case of SimpleLocker, once it infects an Android device, it encrypts various
file types stored on the device's SD card and demands a ransom payment to
decrypt the files.

§ SimpleLocker is a notorious example of mobile ransomware and has been analyzed
in various security research studies to understand its behavior, characteristics, and
the techniques it uses for encryption and evasion.

Sample:
https://koodous.com/apks/8a918c3aa53ccd89aaa102a235def5dcffa047e75097c1ded
2dd2363bae7cf97/general-information

https://koodous.com/apks/8a918c3aa53ccd89aaa102a235def5dcffa047e75097c1ded2dd2363bae7cf97/general-information
https://koodous.com/apks/8a918c3aa53ccd89aaa102a235def5dcffa047e75097c1ded2dd2363bae7cf97/general-information

simplelocker.apk
§ Install the SampleLocker

$ adb install simplelocker.apk

simplelocker.apk
§ Install the SampleLocker

$ adb install simplelocker.apk

simplelocker.apk
§ Running SampleLocker

simplelocker.apk
§ Inspect the .enc file

$ adb pull /sdcard/DCIM/Camera/IMG_20230913_130230.jpg.enc

No JPG header

Sample JPG header

simplelocker.apk
§ We want to find the encryption key or a way to decrypt the file, is it possible ?

§ Let's try

$ jadx --show-bad-code --comments-level debug simplelocker.apk -d
simplelocker_jadx

§ I personally like Jadx, so I'll use Jadx for this analysis

simplelocker.apk
§ AndroidManifest.xml

simplelocker.apk
§ AndroidManifest.xml – Requested Permissions

§ INTERNET (Allows the app to access the internet)

§ ACCESS_NETWORK_STATE (the app can check if it connects to Wifi, Cellular, etc.)

§ READ_PHONE_STATE (the aa can access call status, phone number, device ID)

§ RECEIVE_BOOT_COMPLETED (Allows the app to receive a broadcast message indicating the
device has completed its boot-up process)

§ WAKE_LOCK (Allows the app to keep the device's CPU awake, preventing it from going to sleep)

§ WRITE_EXTERNAL_STORAGE (Allows the app to write to external storage like an SD card.)

§ READ_EXTERNAL_STORAGE (Allows the app to read from external storage)

simplelocker.apk
§ AndroidManifest.xml – Activities

§ Main.java - start service using intent
"com.locker.MainServiceStart"

simplelocker.apk
§ AndroidManifest.xml – Service

§ MainService.java

Call FilesEncryptor

simplelocker.apk
§ FilesEncryptor.java

simplelocker.apk
§ AesCrypt.java

simplelocker.apk
§ Constants.java

Encryption/Decryption

Key = SHA-256("mcsTnTld1dDn".getBytes(HTTP.UTF_8))

Algorithm = AES-CBC-PKCS7Padding

IV = "0000000000000000" //

simplelocker.apk
§ Decode the key into HEX

Key = SHA-256("mcsTnTld1dDn".getBytes(HTTP.UTF_8))

Algorithm = AES-CBC-PKCS7Padding

IV = "0000000000000000" //

Key = d49af309a4c69382ff07bc6f83ba4c2595a7f086d3e5b69e119e2337cb75172d

https://gchq.github.io/CyberChef/#recipe=SHA2('256',64,160)&input=bWNzVG5UbGQxZERu

https://gchq.github.io/CyberChef/

simplelocker.apk
§ Decrypting

$ openssl enc -aes-256-cbc -d -in IMG_20230913_130230.jpg.enc -out
decrypted.jpg -iv '0000000000000000' -K
'd49af309a4c69382ff07bc6f83ba4c2595a7f086d3e5b69e119e2337cb75172d'

File: IMG_20230913_130230.jpg.enc

simplelocker.apk

simplelocker.apk

§ Cleaning

§ Uninstalling

§ Restore emulator state / flashing device with stock ROM

$ adb uninstall org.simplelocker

Finishing Up

§ Next level of malware reverse engineering

§ Native Code Usage

§ Code Obfuscation

§ Dynamic Code Loading

§ App Packing / Encryption

§ Anti-debugging

§ Anti-instrumentation

§ Etc.

Thank You – Team McAiden & ITSL

McAiden Research Lab, Juttikhun Jirathanan, 2023
BLOG.ITSELECTLAB

Post Credit

What is kernel_blob.bin ?

